Modulation of synchrony between single motor units during precision grip tasks in humans.

نویسندگان

  • J M Kilner
  • M Alonso-Alonso
  • R Fisher
  • R N Lemon
چکیده

During precision grip, coherence between motor cortex and hand muscle EMG oscillatory activity in the 15-30 Hz range covaries with the compliance of the manipulated object. The current study investigated whether short-term synchrony and coherence between discharges of single motor units (SMUs) in the first dorsal interosseous (1DI) muscle were similarly modulated by object compliance during precision grip. Eight subjects used index finger and thumb to grip two levers that were under robotic control. Guided by visual feedback of the lever force levels, subjects held the levers against a steady force of 1.3 N for 8 s; they then linearly increased the force to 1.6 N over a 2 s period and held for a further 8 s before linearly decreasing the force back to the 1.3 N level over another 2 s period. Subjects performed the task at two different levels of compliance, each with identical grip force levels. Both surface EMG and SMU activity were recorded from the 1DI muscle. Short-term synchrony between the discharges of pairs of SMUs was assessed in the time domain by cross-correlation and in the frequency domain by coherence analysis. Coherence was seen in two frequency ranges: 6-12 Hz and 15-30 Hz. The compliance of the gripped object had a significant effect on both short-term synchronisation and coherence in the 15-30 Hz range between SMUs; both were greater for the more compliant condition. There was no change in the 6-12 Hz coherence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel algorithm to remove electrical cross-talk between surface EMG recordings and its application to the measurement of short-term synchronisation in humans.

Pairs of discharges of single motor units recorded in the same or different muscles often show synchronisation above chance levels. If large numbers of units are synchronous within and between muscles then the synchrony will be measurable in population recordings such as surface EMG. Measuring synchrony between surface EMG recordings has a number of practical and scientific advantages compared ...

متن کامل

Common input across motor nuclei mediating precision grip in humans.

Short-term synchrony was measured for pairs of motor units located within and across muscles activated during a task that mimicked precision grip in the dominant and nondominant hands of human subjects. Surprisingly, synchrony for pairs of motor units residing in separate muscles (flexor pollicis longus, a thumb muscle, and flexor digitorum profundus, an index-finger muscle) was just as large a...

متن کامل

Muscle-pair specific distribution and grip-type modulation of neural common input to extrinsic digit flexors.

To gain insight into the synergistic control of hand muscles, we have recently quantified the strength of correlated neural activity across motor units from extrinsic digit flexors during a five-digit object-hold task. We found stronger synchrony and coherence across motor units from thumb and index finger flexor muscle compartment than between the thumb flexor and other finger flexor muscle co...

متن کامل

Synchronization in monkey motor cortex during a precision grip task. I. Task-dependent modulation in single-unit synchrony.

Neural synchronization in the cortex, and its potential role in information coding, has attracted much recent attention. In this study, we have recorded long spike trains (mean, 33,000 spikes) simultaneously from multiple single neurons in the primary motor cortex (M1) of two conscious macaque monkeys performing a precision grip task. The task required the monkey to use its index finger and thu...

متن کامل

Differential effects of motor task on cortical excitability induced by cutaneous input

The input-output organization has been considered to be crucial for fine and discrete movements in primates (1). The cortical sensori-motor integration in humans, in particular, plays an important role in the precise motor execution. For instance, the final execution from the cortical command definitely needs the peripheral feedback of sensory information. In view of the afferent information su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 541 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2002